
Functions

Tobias Hanf, Maik Göken
November 21, 2022

Learn Programming with Java



Outline

Revision

Functions

Exercises

1



Revision



Small Quiz

https://pingo.coactum.de/647642
2

https://pingo.coactum.de/647642


Functions



What are Functions?

f (x) = x2

f (2) = 4
f (0) = 0
f (−1) = 1
f (”Hi”) =??

(1)

3



What are Functions?

What is function:

• Block of code
• Way of structuring your code
• Allows you to reuse code
• Can take arguments as Input
• Can provide a result as Ouput

4



Other Names

Other names:

• method
• procedure
• routine
• subprogram
• subroutine

5



Why use Functions?

Why should we use functions:

• Programmers are lazy -> less code is better

• Makes programms more readable (better structur)
• Less changes needed
• Reduces errors/bugs
• Important for OOP

• (and almost all other paradigms)

6



Why use Functions?

Why should we use functions:

• Programmers are lazy -> less code is better
• Makes programms more readable (better structur)

• Less changes needed
• Reduces errors/bugs
• Important for OOP

• (and almost all other paradigms)

6



Why use Functions?

Why should we use functions:

• Programmers are lazy -> less code is better
• Makes programms more readable (better structur)
• Less changes needed

• Reduces errors/bugs
• Important for OOP

• (and almost all other paradigms)

6



Why use Functions?

Why should we use functions:

• Programmers are lazy -> less code is better
• Makes programms more readable (better structur)
• Less changes needed
• Reduces errors/bugs

• Important for OOP
• (and almost all other paradigms)

6



Why use Functions?

Why should we use functions:

• Programmers are lazy -> less code is better
• Makes programms more readable (better structur)
• Less changes needed
• Reduces errors/bugs
• Important for OOP

• (and almost all other paradigms)

6



Functions in Java

1 // function delaration and implementation
2 <ret-type> <func-name>(<para-type> <para-name>, ...){
3 // function body
4 <code>
5 return <expression>;
6 }
7

8 // function call
9 <func-name>(<argument>,...);

• ret-type: type which will be returned by the function
• void if no value is returned

• func-name: name of the functions
• same rules as for variables names

• para-type: type of the parameter

• para-name: name of the parameter 7



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters

• Every parameter has a type and name
• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables

• return retruns the value to the Output
• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Functions in Java

• Every has a return type
• may be void if no value is returned

• Every function has a name
• should be unique
• but can be the same in special cases (later unit)

• Every function has 0 or more parameters
• Every parameter has a type and name

• name must be unique inside the list

• Parameters can be used like normal variables
• return retruns the value to the Output

• and terminates the execution of the function
• can have multiple retrun

• Function call will be replaced with result

8



Example Function

1 public static int add10_1(int n) {
2 return n + 10;
3 }
4

5 public static int add10_2(int n) {
6 n = n + 10;
7 return n;
8 }
9

10 public static void main(String[] args) {
11 int n = add10_1(3); // calling the function
12 System.out.println("3+10 = ", n);
13 }

9



Scopes

• Every function has its own scope
• Variables declared inside a scope are only visible

• inside the scope they were declared in
• scopes inside the current scope (hierarchy)

• Important: parent scope of function
• is scope of declaration
• not scope of call

• Variables in the top most scope are called global Variables

10



Call by Reference vs Call by Value

Call by Value:

• Get a copy of the variable/value
• Changes in the function will no affect the outside variable
• Only done for primitive data types

• int, float, char, …

Call by Reference:

• Get a reference to the object
• Will affect the original object/value
• Done for everything else

• Object, String, Array

11



Exercises



Sum of array

Declare and implement a function which takes
an array of numbers as its argument and

returns the sum of all values inside the array.

sum([30, 45, 10]) -> 85

12



Max Value of array

Declare and implement a function which takes
an array of numbers as its argument and
retruns the largest value of the array.

max([4,5,10,2,60,31]) -> 60

Use the same class/file as in the previous exercise

13



Sum of max values

Define and populate 3 or more arrays each containing
atleat 3 different integers. Use the sum and max

functions from the two previous execises to write a
programm which extracts the max value of each array
and stores it into a new array. The values of the new

array should be summed up and printed to the console.

Use the same class/file as in the previous exercise

14


	Revision
	Functions
	Exercises

