
Inheritance

Tobias Hanf, Maik Göken
January 9, 2023

Learn Programming with Java



Outline

Addition: 4 Pillars of OOP

Revision

Inheritance

Polymorphism

Exercise

1



Addition: 4 Pillars of OOP



4 Pillars of OOP

Different Defenition of the 4 pillars:

• Abstraction
• Hide complexity
• And Implementation

• Inheritance
• Of attributes and methods
• Unit 07

• Encapsulation
• data hiding
• today

• Polymorphisim
• Single Interface, Multiple functionality
• Unit 07

2



Abstraction

• Only show essential information
• Hide implementation detail
• Helps with understanding large systems

• Only concerned with what is done
• And not how it’s done

3



Revision



Quiz

https://pingo.coactum.de/753441
4

https://pingo.coactum.de/753441


Inheritance



Inheritance

• Resusing the properties (data + code) of another class
• Used for creating class hierarchies

• Conceptional hierarchies
• New properties can be added

• Extending existing classes

5



Members of Inheritance

• Superclass: class from which we inherit properties
• Also named: Parent class, Base class
• Object is called Parent Object

• Subclass: class which inherites properties
• Also named: Child class, Derived class
• Object is called Child Object
• Can access (some) properties of the superclass
• Can @Override methods

6



Example: Vehicle

We want to model Vehicles for a Racing game. There are three
different vehicle types in this game: Cars, Motorcycles and
Trucks. Each type has a unique driving physics which should be
implemented by the corresponding class.

7



Example: Vehicle

We have a lot of redundant code (definitions). To circumvent
this a Superclass can be introduced:

8



Inheritance in Java

• Can only inherit from one Superclass
• Can access public and protected properties if the
Superclass

• Can call the constructor of the Superclass via super()
• Can access properties of Superclass via super (like this)

1 class Vehicle {
2 ...
3 }
4

5 class Car extends Vehicle {
6 ...
7 }
8

9 ...

9



Inheritance in Java

1 class <Subclass-name> extends <Superclass-name> {
2 public <Subclass-name>() {
3 // Call Superclass constructor
4 super();
5 }
6

7 @Override
8 public <Superclass-Method>(...) {
9 super.<Superclass-Method>(...);
10 }
11 }

10



Ways of constructing Inheritance

• Generalization
• Bottom-Up
• Extract common features into Superclass
• Example: First Car, … then Vehicle

• Specialization
• Top-Down
• Create a spezialisation from a Superclass
• Example: First Vehicle then Car, …

11



Types of inheritance

12



Polymorphism



Polymorphism

• Having a single Interface
• But different implementations
• Two different types:

• Ad hoc Polymorphism
• Subtyping

13



Ad hoc Polymorphism

• Depending on the type of the Argument
• A different implementation of a function is choosen
• Also known as overloading a function
• Java is only interested in the:

• Function name
• Parameter list

14



Example: sum

1 // f1
2 int sum(int a, int b) {
3 System.out.println("Sum int");
4 return a + b;
5 }
6

7 // f2
8 float sum(float a, float b) {
9 System.out.println("Sum float");
10 return a + b;
11 }
12

13 sum(2, 5); // calls f1
14 sum(2.f,5.f) //calls f2

15



Subtyping

• Override methods of Superclass
• Implement own (specialised) logic for subtype
• Use the annotation @Override
• Java will use the most specific implementation

1 class Vehicle {
2 public void accelerate(float throttlePercentage) { }
3 }
4

5 class Car extends Vehicle {
6 @Override
7 public void accelerate(float throttlePercentage) { }
8

9 }

16



Exercise



University Resource Planner V2

In the new version of the University Resource Planner the
customer wants to be able to track the courses offered by the
University. Each course should have a course name, a teacher
which holds that course and a list of students currently
enrolled in that course.

A teacher should have a name, a year of brith, the current
salary and a list of all lessons he/she teaches.

The method toString() should be implemented for all
classes. It should return a String containing meaningful
information about an object and what type it is (eg. Teacher,
Student, Course).

Try to apply the newly learned principlas (Inheritance, Polymorphism)

17



Creating a Class diagram

Discuss how the class structure of the version could look
like and create a small diagram (together).

• What classes should exists/be added

• What attributes and methods should each class have

• What inheritance should exist

18



Implement the new version

Implement the things we discussed on the last slide by
creating a copy of the old version and adding the new

features.

19


	Addition: 4 Pillars of OOP
	Revision
	Inheritance
	Polymorphism
	Exercise

