
Abstract Classes and Interfaces

Tobias Hanf, Maik Göken
January 16, 2023

Learn Programming with Java



Outline

Revision

Abstract Classes

Interfaces

Static Members

Exercise

1



Revision



Quiz

https://pingo.coactum.de/169407

2

https://pingo.coactum.de/169407


Abstract Classes



Abstract function

An abstract function is a function with no concrete
implementation.

• Method
• Only has declaration
• No concrete implementation

3



Abstract class

An abstract class is a class which has one or more abstract
functions.

• At least one abstract function
• Can have

• Attributes
• Normal functions

4



Why do we use abstract classes?

Sometime we know we need a method but we do not have a
meaningful implementation for the superclass.

• Superclass has function declaration
• Subclass has concrete implementation
• ”Forces” implementation in Subclass

5



Example: Vehicle

We have a lot of redundant code (definitions). To circumvent
this a Superclass can be introduced:

6



Abstract Classes in Java

For abstract functions and classes we use the abstract
keyword.

1 // abstract class
2 public abstract class <class-name> {
3

4 // abstract function
5 public abstract <ret-type> <method-name> (...);
6 ...
7 }
8 }

7



Interfaces



Interface

An interface is group of related methods with no
implementation, which are realized (implemented) by other
classes.

It specifies the:

• Name of the function
• Return type
• Parameter list

An interface could also be seen as an abstract class with no
non-abstract functions and no attributes.

8



Why do we use interfaces?

Sometimes we do not care how an objects looks (what
concrete class it is), we just need a specified set of functions.

Improves:

• Abstraction
• (Generalization)
• Coupling

• very important for large Software

9



Interfaces in Java

• Contains only public functions
• Classes can implement multiple interfaces
• Interfaces can extend other interfaces (multiple)

1 public interface <interface-name> {
2 public <ret-type> <function-name> (...);
3 }
4

5

6 public class <class-name> implements <interface-name> {
7 ...
8 }

10



Example

We want to model a shipment system in which we shall
process different kinds of items (eg. Postcards, Packets, Bulky
Goods, …). One requirement is to track the location of each
item. Because how an item is tracked depends heavily on the
type of the item, we introduce an interface Trackable.

1 public interface Trackable {
2 public Location getLastKnownLocation();
3

4 public List<Location> getLocationTrace();
5 }

11



Example

1 public class Packet implements Tackable {
2 ...;
3

4 @Override
5 public Location getLastKnownLocation() {
6 ...;
7 }
8

9 @Override
10 public List<Location> getLocationTrace() {
11 ...;
12 }
13 }

12



Example

We can now do the following:
1 public static void main(String[] args) {
2

3 public static void main(String[] args) {
4

5 Trackable[] items = new Trackable[2];
6

7 items[0] = new Postcard();
8 items[1] = new Packet();
9

10 for(int i = 0; i < items.length; i++) {
11 items[i].getLastKnownLocation();
12 }
13 }
14 }

13



Static Members



Static Variable

• Also known as Class Variables
• Only one variable per Class
• Same Variable can be accessed from every object of the
class

• Or from outside the class via the class name

1 Test.counter;

14



Static Functions

• Also known as Class Methods
• One function for all objects of a class
• Can modify static variables
• But cannot access instance variables or methods directly
• Can also be accessed via the class name

1 Test.getCounter();

15



Static in Java

1 class Test {
2 public static int counter;
3

4 public static int getCounter() {
5 return counter;
6 }
7 }

Another useful keyword is final which disallows the
modification of a variable.

The combination of a static and final is often used for
constants.

1 public static final PI = 3;

16



Exercise



URPv3

In the next version of the University Resource Planer software
we want to track all the things a student has received a grade
on. This could be an exam, lab or his/her thesis. Depending on
the graded object, the grading process and data needed for it
could be very different. But we want a simple way of getting
the grade disregarding what type of object we look at.

Every student should have a list of graded items he/she
received. They should be used to calculate the average grade
of the student and the old grade tracking system should be
removed.

17



Discuss the modeling

Discuss how the new requirements could be modeled.
Hint: Apply the newly learned concepts

18



Implement the model

Create a copy your current URP project and implement
the new model.

19


	Revision
	Abstract Classes
	Interfaces
	Static Members
	Exercise

